首页> 外文OA文献 >Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order
【2h】

Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order

机译:保持Runge-Kutta的隐式和隐式显式强稳定性   高线性顺序的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When evolving in time the solution of a hyperbolic partial differentialequation, it is often desirable to use high order strong stability preserving(SSP) time discretizations. These time discretizations preserve themonotonicity properties satisfied by the spatial discretization when coupledwith the first order forward Euler, under a certain time-step restriction.While the allowable time-step depends on both the spatial and temporaldiscretizations, the contribution of the temporal discretization can beisolated by taking the ratio of the allowable time-step of the high ordermethod to the forward Euler time-step. This ratio is called the strongstability coefficient. The search for high order strong stability time-steppingmethods with high order and large allowable time-step had been an active areaof research. It is known that implicit SSP Runge-Kutta methods exist only up tosixth order. However, if we restrict ourselves to solving only linearautonomous problems, the order conditions simplify and we can find implicit SSPRunge-Kutta methods of any linear order. In the current work we aim to findvery high linear order implicit SSP Runge-Kutta methods that are optimal interms of allowable time-step. Next, we formulate an optimization problem forimplicit-explicit (IMEX) SSP Runge-Kutta methods and find implicit methods withlarge linear stability regions that pair with known explicit SSP Runge-Kuttamethods of orders plin=3,4,6 as well as optimized IMEX SSP Runge-Kutta pairsthat have high linear order and nonlinear orders p=2,3,4. These methods arethen tested on sample problems to verify order of convergence and todemonstrate the sharpness of the SSP coefficient and the typical behavior ofthese methods on test problems.
机译:当随着时间发展双曲型偏微分方程的解时,通常希望使用高阶强稳定性(SSP)时间离散化。这些时间离散化在一定的时间步长限制下保留了与一阶前向欧拉耦合时空间离散化所满足的单调性。虽然允许的时间步长取决于空间和时间离散化,但时间离散化的贡献可以通过取高阶方法的允许时间步长与正向欧拉时间步长之比。该比率称为强稳定性系数。寻找具有高阶和大允许时阶的高阶强稳定时阶方法已经成为研究的活跃领域。众所周知,隐式SSP Runge-Kutta方法仅存在至第六阶。但是,如果我们仅局限于求解线性自治问题,则阶数条件会简化,并且可以找到任何线性阶数的隐式SSPRunge-Kutta方法。在当前的工作中,我们旨在找到非常高的线性阶数隐式SSP Runge-Kutta方法,这些方法是允许的时间步长的最佳条件。接下来,我们为隐式-显式(IMEX)SSP Runge-Kutta方法制定一个优化问题,并找到具有较大线性稳定性区域的隐式方法,这些线性方法与已知的显式SSP Runge-Kutta方法配对,阶数为plin = 3,4,6,并且优化了IMEX SSP具有高线性阶数和非线性阶数p = 2,3,4的Runge-Kutta对。然后在样本问题上对这些方法进行测试,以验证收敛顺序并证明SSP系数的敏锐度以及这些方法在测试问题上的典型行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号